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Abstract

Pulse Rate Variability (PRV) derived from photoplethys-
mography (PPG) offers a practical alternative to Heart
Rate Variability (HRV) from ECG. However, PRV accu-
racy depends strongly on the quality of the underlying
PPG signal. PPG signals from 120 subjects (225 sessions)
were analyzed. Data were segmented into 5-minute win-
dows, yielding 1,046 segments. Four Signal Quality In-
dices (SQIs) were computed: kurtosis, skewness, entropy,
and perfusion index. A dynamic quantile-based normal-
ization scaled all SQIs to a 0–1 range. All SQI metrics
exhibited significant negative correlations with HRV error
(p ¡ 0.001). Perfusion Index showed the strongest associa-
tion (r = –0.189, R² = 3.6%). It also remained predictive in
high-quality segments (SQI ¿ 80%, r = –0.151, p ¡ 0.001).
In contrast, other SQIs lost discriminative power at high
quality levels. Quality distribution varied markedly across
metrics: 84.3% of segments exceeded 80% quality for Per-
fusion Index, while only 32.0% did so for Skewness.

1. Introduction

Heart rate variability (HRV) analysis is a valuable non-
invasive tool for assessing autonomic nervous system func-
tion and cardiovascular health [1,2]. While electrocardiog-
raphy (ECG) remains the gold standard, photoplethysmog-
raphy (PPG) offers significant advantages including ease
of use, lower cost, and integration into wearable devices
[3, 4]. However, PPG signals are more susceptible to mo-
tion artifacts, ambient light interference, and poor sensor
contact compared to ECG, leading to potential inaccura-
cies in HRV parameter estimation [5].

Current PPG signal quality assessment approaches lack
standardization and often rely on subjective visual inspec-
tion or simple threshold-based methods [6]. While various
signal quality indices (SQI) have been proposed, includ-
ing statistical measures (kurtosis, skewness), information-
theoretic measures (entropy), and physiological parame-
ters (perfusion index), no comprehensive study exists for

their combined evaluation and standardization. The chal-
lenge is further complicated by the need to establish qual-
ity thresholds that are sensitive to poor-quality signals
while avoiding rejection of acceptable data. Traditional
normalization approaches may not adequately account for
inter-subject variability and PPG-specific signal character-
istics. Recent advances have demonstrated potential for
automated quality assessment using multiple complemen-
tary metrics, but the relative performance of different SQI
metrics and their optimal combination for PPG-based HRV
analysis remains unclear.

This study addresses these limitations by performing an
analysis that integrates multiple SQI metrics with dynamic
normalization. Our objectives were to: (1) evaluate four
primary SQI metrics in predicting PRV measurement ac-
curacy; (2) identify the most robust quality metrics for au-
tomated PPG signal acceptance in clinical applications.

2. Methods

2.1. Dataset and Signal Processing

This study analyzed PPG signals from 120 subjects in
two different sessions stress and baseline. Overall datasets
contain 240 sessions. The dataset originates from the ES3
Project, comprising stress induction sessions with a 10-
minute baseline relaxation period followed by five stress
tasks of varying durations (2-10 minutes). Data were col-
lected from 120 participants across three Spanish universi-
ties. Single-lead ECG recordings (X-lead orthogonal con-
figuration) were acquired using standardized equipment
and procedures across all sites. Rigorous quality control
measures ensured only artifact-free ECG segments were
analyzed, minimizing inter-subject and inter-institutional
variability. Raw PPG signals were filtered using low-pass
filters with cutoff frequency of 10hz.

2.2. Signal Segmentation

PPG signals were initially segmented into 10-second
non-overlapping windows for preliminary SQI calculation,
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Figure 1. Analysis pipeline for correlation of SQI metrics.

denoted Q(i) where i indicates the i-th window. Subse-
quently, these 10-second segments were aggregated into 5-
minute windows by computing median across constituent
10-second segments within each 5-minute period. Later,
we used different normalisation methods to normalise each
SQI metrics. This hierarchical segmentation approach en-
abled both fine-grained and broader temporal analysis of
signal quality patterns and robust estimation of RMSSD.

3. Signal Quality Index (SQI) Metric

Four primary SQI metrics were computed for each sig-
nal segment: (1) Kurtosis: Measures the ”tailedness” of
the signal amplitude distribution. Values closer to 3 in-
dicate normal distribution characteristics, while deviations
suggest artifacts or noise. (2) Skewness: Quantifies the
asymmetry of the signal amplitude distribution. Values
near zero indicate symmetric distributions, typical of high-
quality PPG signals. (3) Entropy: Estimates signal com-
plexity and predictability. Lower entropy values indicate
more regular, predictable signals associated with better
quality. (4) Perfusion Index: Calculated as the ratio of
pulsatile to non-pulsatile components of the PPG signal,
representing peripheral perfusion strength and signal am-
plitude adequacy [6].

Quality indices were normalized to [0, 1] using dynamic
quantile-based scaling. For kurtosis (κ) and skewness (γ),
normalization was performed as follows:

Qn
k,γ(i) = 1−

∣∣∣Qk,γ(i)− Q̂k,γ

∣∣∣
max

( ∣∣∣Qk,γ,0.05 − Q̂k,γ

∣∣∣ ,∣∣∣Qk,γ,0.95 − Q̂k,γ

∣∣∣ ).
(1)

For the perfusion index, normalized values were computed
using:

Qn
P (i) =

QP (i)−QP,0.05

QP,0.95 −QP,0.05
. (2)

Finally, entropy-based quality indices were normalized ac-
cording to:

Qn
H(i) = 1− QH(i)−QH,0.05

QH,0.95 −QH,0.05
. (3)

where Q̂ denotes the median, and subscripts indicate per-
centiles.

3.1. HRV Method Assessment

Reference HRV parameters were computed from simul-
taneously recorded ECG signals. PPG-derived PRV met-
rics were compared against ECG references, with RMSSD
error calculated as the absolute difference between PPG-
derived and ECG-derived RMSSD values.

3.2. Statistical Analysis

Correlation analyses were performed using the Pearson
correlation coefficient to assess relationships between SQI
metrics and errRMSSD. Statistical significance was evalu-
ated at α = 0.05. Analyses were conducted on both the
complete dataset and high-quality subsets (SQI > 0.8).

4. Results

4.1. Dataset Characteristics

The final dataset comprised 1,046 five-minute segments
from 225 sessions. After removal for 15 sessions from the
overall datasets due to the erroneous data.

4.2. SQI Distribution and Quality Assess-
ment

Quality distribution varied significantly across the four
SQI metrics: (1) Perfusion Index: 84.9% of segments ex-
ceeded 80% quality threshold. (2) Entropy: 80.5% of
segments exceeded 80% quality threshold. (3) Kurtosis:
67.9% of segments exceeded 80% quality threshold. (4)
Skewness: 33.7% of segments exceeded the 80% quality
threshold. (Figure 2).

4.3. Correlation with HRV Accuracy

Overall correlations (all 1,046 segments) revealed sig-
nificant negative relationships between SQI metrics and
RMSSD error, supporting the hypothesis that higher signal
quality corresponds to lower errRMSSD estimation errors.
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Figure 2. Evaluates SQI performance consistency across different quality levels. Panel A compares absolute correlation
coefficients between all segments (n = 1,046) versus high-quality segments (SQI ¿ 80%), revealing that most metrics lose
discriminative power when restricted to high-quality signals. Panel B illustrates the relationship between ample size and
statistical significance for high-quality segments.

All correlations were statistically significant (p ¡ 0.001),
with Perfusion Index demonstrating the strongest relation-
ship with HRV accuracy (Figure 3).

4.4. High-Quality Signal Analysis

When restricting analysis to high-quality segments (SQI
¿ 80%), most SQI metrics lost predictive power, except for
Perfusion Index (Table 1).

4.5. Dynamic Normalization Effectiveness

The normalization method successfully standardized
SQI values across the 0-1 range while preserving relative
quality relationships. Mean normalized SQI values were:
Perfusion Index(0.847), Entropy(0.823), Kurtosis(0.765),
Skewness(0.542).

5. Discussion and Conclusions

Results demonstrate that Perfusion Index provides the
most robust and consistent assessment of PPG signal qual-
ity for HRV analysis. Unlike other metrics that lose dis-
criminative power at high quality levels, Perfusion In-
dex maintains significant correlation with HRV accuracy
across the entire quality spectrum (r = -0.151, p ¡ 0.001

for high-quality segments). The weak but significant cor-
relations (R² = 1.9-3.6%) indicate valuable information for
automated quality assessment in clinical and research ap-
plications, and automated PPG signal acceptance in car-
diovascular monitoring applications.

This study focused on 5-minute segments which may
not capture shorter-term quality variations. Future work
should investigate real-time quality assessment and adap-
tive filtering approaches. Additionally, the correlation
strengths, while statistically significant, indicate that other
factors beyond these SQI metrics contribute to HRV mea-
surement errors.

The proposed analysis provides a foundation for devel-
oping automated PPG quality assessment systems. Inte-
gration with machine learning approaches and real-time
implementation in wearable devices represents promising
avenues for clinical translation.

This study establishes a comprehensive analysis for PPG
signal quality assessment using dynamic normalization of
multiple SQI metrics. Perfusion Index emerges as the most
reliable quality indicator.
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Figure 3. Signal Quality Indices vs RMSSD Error Correlation Analysis. Scatter plots comparing the relationship between
normalized Signal Quality Index (SQI) metrics and RMSSD estimation errors. Each panel shows: (A) Perfusion Index (r=-
0.189, p¡0.001), (B) Skewness (r=-0.153, p¡0.001), (C) Entropy (r=-0.143, p¡0.001), and (D) Kurtosis (r=-0.138, p¡0.001).
Data points represent individual 5-minute PPG segments (n=1,046) with line.

Table 1. Correlation Analysis
SQI Metric n Pearson r p-value HQ segments (n¿80%) Pearson r p-value
Perfusion Index 1046 -0.189*** <0.001 888 -0.151* <0.001
Skewness 1046 -0.153*** <0.001 842 -0.005 0.887
Entropy 1046 -0.143*** <0.001 710 0.018 0.639
Kurtosis 1046 -0.138*** <0.001 352 0.004 0.943

“PRE-C-2022-0096”. Computations were performed on
the HPC cluster provided by University of Zaragoza.
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